16-Color Panel to Measure Inhibitory Receptor Signatures from Multiple Human Immune Cell Subsets

Part of the Cytometry Part A Spotlight Series

 

Thursday, August 9 at 12pm Eastern (U.S. & Canada)

 

Presented by:

Anna Belkina, MD, Ph.D.
Associate Director
Flow Cytometry Core Facility
Boston University School of Medicine
Boston, MA, USA

 

Moderated by Pratip Chattopadhyay

 

About the Presenter

Anna C. Belkina is the Associate Director of the Flow Cytometry Core Facility and an Assistant Professor of Pathology and Laboratory Medicine at Boston University School of Medicine. She received her M.D. degree from Russian State Medical University in Moscow and her Ph.D. degree from Boston University School of Medicine investigating the epigenetic regulation of inflammatory responses driven by bromodomain proteins. Anna’s research is focused on the intersection of immunology and computational biology, for her current research efforts include investigating the immune landscape of chronic inflammatory diseases and developing computational techniques to assess high-parameter single cell cytometry data.  Anna is an active member of ISAC (International Society for the Advancement of Cytometry) and was named an ISAC SRL Emerging Leader in 2015.

Webinar Summary

This webinar will walk you through the development and optimization of a 16-color human flow cytometry panel for combinational analysis of the Inhibitory Receptors PD-1, TIGIT, CD160, LAG-3, TIM-3 and the activation marker CD137 from CD4+ T cells, CD8+ T cells, NK cells, iNKT cells, and gamma delta T cells. A flow cytometry panel that measures 5-plex IR signatures from multiple populations of immune cells would be useful for both mechanistic studies of exhaustion as well as translational research efforts for a wide span of chronic diseases such as cancer and HIV, especially in the context of scarce sample material.

This panel was thoroughly optimized for use on a 4-laser, 16-detector BD FACSARIA II SORP. In order to gain optimal performance from using multiple polymer fluorophores, panel design was preceded by instrument calibration and optimization based on previous publications. Our selection of reagents was defined by predicted marker distribution on cells and levels of their expression and fluorophore ‘brightness’, as well as predicted spillover spread within the fluorophore matrix, and reagent availability from common suppliers. When multiple clones were available for particular antigens of interest, selections were made after thorough literature review. Finally, FMO tests were performed to verify specificity of observed populations; we also re-titrated several reagents to limit spillover spread in the channels that appeared to be more vulnerable to this issue.

We will conclude with some data from a large-scale study where this panel has been employed to successfully map an IR-specific phenotype in a cohort of aviremic HIV+ individuals and link it to disease.

Learning Objectives

  • Recall basic principles of high-parameter panel design and prerequisite instrument optimization
  • Review major human immune subset mapping with surface markers
  • Demonstrate the process of panel development and optimization
  • Evaluate the resulting panel design with real life application

Who Should Attend

High-parameter flow cytometry practitioners including primary researchers and core facility staff; scientists who want to start building their own extensive multicolor flow cytometry panels.

 

 

Seminar Information
Date Presented:
August 09, 2018 12:00 PM Eastern
Length:
1 hour, 30 minutes
Registration Fee:
Free
Cytometry Part A Spotlight: 16-Color Panel to Measure Inhibitory Receptor Signatures from Multiple Human Immune Cell Subsets
Individual topic purchase: Selected
American Society for Clinical Pathology
CMLE: 1.00
Products
Streaming
ISAC Member Price: $0.00
Non-Member Price:$0.00